Q1.

5 (a) ((i)	air spaces (between cells) / aerenchyma ; in mesophyll / cortex; formed by cell death;	[2 max]
(i	ii)	provides oxygen; for aerobic respiration / because conditions are anaerobic; ref. diffusion; AVP; e.g. allows escape of ethene / buoyancy / active transport	[2 max]
(b) ((i)	internode length increases as water depth increases; use of figures; (2 days) 2 depths + 2 lengths ignore units	[2]
(1	ii)	part of plant is (always) above water; access to light; access to, air / oxygen / carbon dioxide; ref. pollination / flowering;	[2 max]
(ii	ii)	ethene concentration increases up to 30 or 40 cm water depth; fluctuation / plateau between 30 or 40 cm to 60 cm water depth; comparison between when water level is constant and when water level increase	s; [2]
(c) (i)	su	ubstance that affects growth / development;	[1]
(ii)	2. 3. 4. 5.	gibberellin causes increase in stem length; detail of mechanism; e.g. cell elongation gibberellin has greater effect with ethene present; more gibberellin could be secreted as water depth increases; gibberellin could remain constant but have greater effect because more ethene secreted; more gibberellin could be transported through plant as water depth increases; AVP;	; [3 max]
		[To	tal: 14]

Q2.

- 3 (a) (i) 1 anthers, versatile / loosely attached / attached at one point (to filaments);
 - 2 anthers / stamens / tassels / androecium, on long filaments / hang out (of flower);
 - 3 anthers / stamens / tassels / androecium, above leaves ;
 - 4 stigmas / silks, hang out (of flower);
 - 5 stigmas, large surface area / hairy / feathery / branched, (to catch pollen); [3 max]
 - (ii) advantages
 - 1 genetic variation / more diverse gene pool / increased gene pool;
 - 2 increased heterozygosity;
 - 3 less likely that harmful recessive alleles will be expressed;
 - 4 hybrid vigour / decreased inbreeding depression;
 - 5 ability to respond to changing conditions / named example; e.g. different environments / pests / disease / increased survival of offspring [3 max]

Q3.

- 4 (a) (i) A pericarp / fruit coat
 - B scutellum / cotyledon
 - C plumule / embryo shoot
 - D radicle / embryo root 0 or 1 = 0 marks, 2 or 3 = 1 mark, 4 = 2 marks;; [2]
 - (ii) 1 food / starch / nutrients;
 - 2 for use, during germination / before photosynthesis / before leaves emerge above ground;
 - 3 to provide glucose for, respiration / ATP production; ignore energy
 - 4 to produce cellulose for cell wall production;
 - 5 to produce protein for, cell division / growth (of plant); R growth of cells [3 max]

[2 max]

- (b) (i) 1 permanently;
 - 2 binds with / blocks, active site;
 - 3 binds with, another part of enzyme / allosteric site;
 - 4 change (shape) of active site;
 - (ii) when acetylcholinesterase is inhibited
 - 1 acetylcholine remains attached to receptors (on post-synaptic membrane);
 - 2 sodium channels on post-synaptic (membrane) <u>remain open</u>;
 - 3 membrane remains depolarised;
 - 4 action potentials / nerve impulses, continue to be produced; [2 max]

- (c) 1 different sequence of, bases / nucleotides, causes different, sequence of amino acids / primary structure;
 - 2 acetylcholinesterase has a different, shape / tertiary structure;
 - 3 acetylcholine can still bind with, active site / acetylcholinesterase / enzyme or active site remains functional;
 - 4 (but) pyrethrum / inhibitor, cannot bind with, acetylcholinesterase / enzyme;
 - 5 inhibition is allosteric / AW;

[3 max]

- (d) (i) 1 below 0.5 μg no insects killed in either group;
 - 2 at 0.5 μg hybrid insects killed but resistant insects survived;
 - 3 at 10 µg all insects killed in hybrid group but only 80% killed in resistant group;
 - 4 at 30 μ g all insects killed in both groups; penalise lack of units once

[3 max]

- (ii) 1 resistant and susceptible insects are homozygous;
 - 2 hybrid insect is heterozygous;
 - 3 hybrid insect shows codominance / mutant allele and normal allele both have an effect;

allow ref to gene here [2 max]

[Total: 17]

Q4.

```
(a) (i) J - epidermis/epidermal cell;
            K - mesophyll (cell);
            L - bundle sheath (cell);
                                                                                              [3]
        (ii) 1 mesophyll cells tightly packed/AW;
            2 so O<sub>2</sub> cannot reach bundle sheath cells;
            3 light independent stage/Calvin cycle or RuBP, in bundle sheath cells;
            4 ref. malate shunt;
            5 maintains high CO2 concentration (in bundle sheath cells);
            6 PEP carboxylase, has high optimum temperature/has higher affinity for CO2/doesn't
                accept O2;
                (PEP carboxylase) not denatured;
                photorespiration is avoided;
                                                                                          [4 max]
    (b) 1 reduces water loss/AW;
        2 wax does not melt;
        3 shiny surface reflects radiation;
                                                                                          [2 max]
(c) (i) greater reduction in sorghum than in soybean;
        use of comparative figures; e.g. sorghum 5.5 to 1.2 or by 4.3
                                         soybean 5.2 to 1.6 or by 3.6
                                                                                             [2]
    (ii) reject 'no' for all points
        1 less surface area;
            less absorption of light;
            less, photophosphorylation / light dependent reaction;
            less chemiosmosis;
            (due to) smaller thylakoid space or reduced proton gradient;
        5
            less ATP (produced);
            less reduced NADP (produced);
            light-independent reaction / Calvin cycle, slows down;
        9 less carbon dioxide, fixed / combined with PEP; R uptake
                                                                                        [4 max]
                                                                                     [Total: 15]
```

Q5.

1	(a)	1	Ca	an be grown in many different environments/AW;	
		2	(9	rains) contain variety of nutrients; A list of 3+ nutrients	
		3	de	etail of nutrient content; e.g. high in calcium/vitamin B/protein	
		4	(g	rains) have high, energy/fibre, content;	
		5	(g	rains) store well ;	[3 max]
	(b)	(i)	er	ndosperm;	[1]
		(ii)	1	both rise and then fall;	
			2	sorghum (enzyme) has higher activity (at all temperatures);	
			3	sorghum (enzyme) has higher maximum activity;	
			4	sorghum (enzyme) has higher optimum temperature ; $$ A 70° and 60° $$	
			5	comparative figures to illustrate points 2 or 3;	[3 max]
		(iii)	1	(rice) tertiary structure/active site, of amylase is altered more by high temper	rature;
			2	(therefore) fewer ES/enzyme-substrate complexes formed/AW;	
			3	high temperatures affect H bonds (more than other bonds);	
			4	amylase in rice may have more H bonds; ora	
			5	correct ref. to other named bond;	[3 max]
(0	:) (i) 1		higher CO ₂ uptake at higher light intensity; ora	
		2		comparative figures; using columns 1 and 2	
		3		CO ₂ used in, Calvin cycle/light independent reaction;	
		4		photophosphorylation/light dependent stage provides, ATP/reduced NADF	P;
		5		for use in, Calvin cycle/light independent reaction;	
		6		light is a limiting factor;	[3 max]
	(i	i) 1		survive better at low light intensities;	
		2		comparative figures; using columns 1 and 6	[2]
					Total: 151

Q6.

```
2. reduction in, number of stomata / surface area, (for, transpiration / evaporation);
           rolling leaves traps moist air;

    idea of reduced, diffusion / water potential, gradient (between leaf and trapped air);

                                                                                                  [3 max]
       (b) (i) cooked protein more digestible than raw protein;
                use of figures; accept any named comparison between cooked and raw
                                                                                                       [2]
           (ii) cooked
                1. cooking breaks cross-links (in kaffirin); A bonds
                2. ref. to named bond; e.g. hydrogen / ionic / disulphide / covalent
                3. tertiary / 3D / quaternary, structure disrupted / AW;
                protease can now bind, more / easier, with polypeptides;
                enzyme-substrate complexes can form;
                6. so more protein is digested to amino acids;
                                                                                                  [3 max]
                                                                                                [Total: 8]
Q7.
          (a) (i) 1. hybrid vigour;
                   2. increased heterozygosity / decreased homozygosity;
                   3. increases gene pool / AW;
                   4. harmful recessive alleles less likely to be expressed / reduces inbreeding depression;
                   5. increased yield;
                   6. other named useful characteristic; e.g. disease resistance / more nutritious [3 max]
               (ii) high cost (of seed) / farmers must buy new seed each year;
                                                                                                       [1]
           (b) (i) 1. stomata closed;
                       to reduce transpiration / to avoid too much loss of water;
                       so carbon dioxide cannot enter the leaf;
                   4. so carbon dioxide concentration (in leaf / in chloroplast) becomes very low; [3 max]
               (ii) 1. RuBP / rubisco / Calvin cycle, present in bundle sheath cells;
                   2. which are tightly packed;
                   3. which are not in contact with air (spaces);
                   so are not exposed to oxygen;
                   CO<sub>2</sub> / malate, delivered to bundle sheath cells;
                   from mesophyll (cells);

 (so) CO<sub>2</sub> concentration in bundle sheath cells always high;

                                                                                                  [4 max]
           (c) (i) 1. CO2 concentration (in bundle sheath cells) is always high;
                   CO<sub>2</sub> not limiting;
                       another factor / light intensity / temperature, limiting;
                   4. no photorespiration;
                                                                                                   [2 max]
               (ii) 1. idea of change in temperature;
                       affects, light independent / light dependent, stage (of photosynthesis);
                   3. idea of change in light intensity;
                   affects light dependent stage (of photosynthesis);
                                                                                                       [2]
                                                                                               [Total: 15]
```

(a) 1. (either feature) reduces water loss by, transpiration / evaporation;

Q8.

5

4	(a)	1.	anthers, outside flower / exposed, to allow wind to carry pollen away ;	
		2.	long / flexible, filaments to allow wind to dislodge pollen ; $\ \boldsymbol{A}$ versatile anthers	
		3.	no / small, petals to allow, anthers/ pollen, to be exposed to the wind;	
		4.	anthers large to produce large quantities of pollen;	[2 max]
	(b)	1.	(genetic) mutation / random changes (in corn borer);	
		2.	caterpillars / corn borers, with mutation, more likely to survive / have selective advantage ;	
		3.	(adults with this mutation) likely to breed;	
		4.	mutated gene / resistance alleles, passed on to next generation;	
		5.	increase in frequency of <u>allele</u> for resistance;	[3 max]
	(c)	<u>rr</u> ;		[1]
	(d)	1.	when (non resistant) borers from outside breed with resistant borers, many offs not be resistant;	spring will
		2.	because (many) offspring will be, Rr / heterozygous;	
		3.	detail, e.g. results of rr x RR and rr x Rr;	[2 max]
	(e)	(i)	1. much mixing;	
			more marked females recaptured than marked males, showing more mixin males; ora	g of
			3. high percentage of recaptured borers were unmarked;	
			 unmarked borers come from different fields; 	
			5. ref. considerable variation between results for different trials;	
			6. use of data from shaded columns ;	[3 max]

- (ii) 1. (HDR strategy needs) mating between borers from Bt fields with borers from outside;
 - (results show) marked females had mated with marked males / only some marked females had mated with unmarked males;
 - 3. use of figures relating to above point;
 - 4. (this means that) many females mated with males from the same field;
 - 5. (so) many females from a Bt field would mate with males from Bt field;

- their offspring would all be, resistant / rr;
- ref. this reduces the effectiveness of the HDR strategy / fewer heterozygotes;

[4 max]

[Total: 15]

Q9.

- 4 (a) 1. ref. to vitamin A deficiency in, developing countries / named part of the world;
 - 2. rice, is a staple food / forms a major part of diet (in those countries);
 - 3. increases vitamin A (in diet);
 - ref. prevention of blindness or reduces susceptibility to, diarrhoea, respiratory infections, measles; ora [2 max]
 - (b) (desaturases, are not limiting production because) phytoene does not accumulate;
 - (so) desaturases are, functioning normally / converting phytoene to other compounds;

or

GGDP, present in large amounts / accumulates / remains high;

- (so) phytoene synthase is, limiting / reducing conversion to phytoene; [2]
- (c) (i) restriction (enzymes);

[1]

- (ii) 1. (promoter required) to ensure expression of the (introduced) genes / AW;
 - 2. (suitable promoter) might not be present in the rice cells;
 - (suitable promoter) might not be in the correct position relative to the introduced genes;
 [2 max]
- (iii) yes (no mark)
 - 1. all rice cells contain the same crtl genes;
 - 2. only difference was the source of the psy genes;
 - 3. if crtl limiting there would be no difference in the carotene in each group; [2 max]

- (d) 1. different base sequences (in the psy genes from different sources);
 - 2. so different amino acid sequences, in the enzyme / in phytoene synthase;
 - so different tertiary structure;
 - 4. could affect interaction with other components, e.g. cofactors;
 - 5. AVP; e.g. refs to different protein synthesising machinery in the cells

ignore refs to active site and ability to bind with GGDP – must be able to do that as it does it in daffodils [2 max]

© University of Cambridge International Examinations 2012

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
2	GCE AS/A LEVEL – May/June 2012	9700	42

- (e) 1. GM seed could be difficult for farmers in developing countries to obtain;
 - 2. high cost of buying (new) GM seed / cannot use own seed;
 - 3. may not grow well in all conditions (as other traits not selected for);
 - 4. too expensive for, people to buy / farmers to sell;
 - might reduce efforts to relieve poverty;

[3 max]

[Total: 14]

Q10.

(i) as temperature increases, rate / CO₂ used, increases then decreases; [2] 2 paired figs / peak at 18°C; (ii) 1. (rises due to) increased kinetic energy of molecules; increased number of collisions / increase in enzyme activity; enzymes become (partly) denatured above, 18°C / optimum; 4. (affects) rate of, light independent reaction / Calvin cycle / dark stage; stoma close as temperature rises ; because of increased transpiration rate; which decreases carbon dioxide availability; 8. more carbon dioxide available as temperature increases; 9. faster diffusion rate: 10. CO2 / light / other factor, becomes limiting; [2 max] (b) (i) 1. maize has greater rate of photosynthesis (at all temperatures) / ora; optimum for maize is 23°C while optimum for wheat is 18°C; 3. steeper increase for maize as temperature increases to optimum / ora; 2 paired figs (comparing wheat and maize); [2 max] (ii) 1. bundle sheath cells (surround, vascular bundle / vein); 2. CO2 accumulation / maintains higher CO2 concentration than air outside; light-independent stage takes place here ; (bundle sheath cells) kept away from air spaces (by mesophyll cells); limits, loss of CO₂ / uptake of O₂; avoids photorespiration / competition between CO₂ and O₂ for, RuBP / rubisco; 7. plasmodesmata between bundle sheath cells and mesophyll; 8. relevant comment on stomata; [3 max] (iii) lamellae / membranes, needed for light dependent reaction; as less chlorophyll to absorb light / less surface area exposed to light; [2] (c) (i) endosperm; [1] (ii) 1. total of oil and starch lower in maize than in sorghum / ora; 2. 66.9% and 73.9% dry mass / ora; maize contains less energy than sorghum / ora; but overall not much difference in energy; (because) 5. oil provides more energy than starch (per unit mass); 6. maize has more oil but not enough to outweigh the greater starch content in sorghum / AW ; [3 max] [Total: 15]

Q11.

3 (a) 1 very extensive root system / roots go very deep; small surface area of leaves; R narrow leaves leaves roll / presence of hinge cells; A bulliform 3 leaves / stalks, have waxy covering / thick cuticle; high silica content; stomata, reduced in number / in sunken pits; idea of supporting tissue; e.g. sclerenchyma [max 2] (b) (i) 1. (ABA concentration) increases from day 3 / 4 to day 7 then decreases (to day 8 / 9 / 10) or peaks at day 7; comparative figs (2 ABA concentrations at 2 days); ignore units e.g.1 at day 4 and 10 at day 7 3. as water potential decreases concentration of ABA increases / ora; no response until water potential drops below -600 to -800 kPa; [max 3] (ii) fall in water potential causes, stomatal resistance to increase / closure of stomata; A ora increase in ABA concentration causes, stomatal resistance to increase / closure of stomata; A ora detail of mechanism; e.g. turgor of guard cells / proton pump / flow of K+ [max 2] (c) stomatal closure reduces water loss; R stops / prevents by transpiration / (by diffusion of) water vapour from leaves; [2] [Total: 9]

Q12.

4	(a)		AABBCC;	[1]
	(b)		if doubling of chromosomes has not occurred	
		1	chromosomes would not be able to pair;	
		2	because chromosomes in the two sets are not homologous;	
		3	during, prophase 1 / meiosis 1;	
		4	(therefore) gametes cannot be produced;	[3 max]
	(c)	1	unable to, breed / reproduce ;	
		2	to produce fertile offspring;	
		3	reproductively isolated;	[2 max]
	(d)	1	species split into two populations by (geographical) barrier;	1
		2	different, selection pressures / (environmental) conditions, (on the two populations);	
		3	different features, selected / advantageous ;	
		4	change in, gene pools / allele frequencies ;	
		5	(over time) become unable to interbreed;	[3 max]
				[Total: 9]

Q13.

4	(a)	(i)	yield for sorghum is <u>greater</u> than yield for wheat is <u>better</u> in HWC		
			sorgham; 3. paired figs; only award 4. sorghum is adapted to live in ari 5. and 6. any two of the following	id environment / AW ;	
			feature	function	
			extensive / deep, root system	maximises water absorption	
			curled leaves / leaves small surface area / wazy leaves / bulliform leaf cells / hinged leaf cells / reduced stomata numbers / stomata in pits	reduces water loss	
			high silica content / more sclerenchyma / more strengthening tissue	reduces wilting	
					[4 max

	(ii)	number of <u>seeds</u> sown; density of <u>seeds</u> sown / area of plot; minerals / fertilisers;	
		wind / shelter;	[2 mov]
(b)		soil pH; 1. ref. bundle sheath cells;	[2 max]
		2. light independent stage occurs / RuBP found (in bundle sheath cells); 3. RuBP / rubisco, kept away from, air / oxygen; 4. by mesophyll cells;	
		5. limits uptake of O ₂ / maintains high CO ₂ concentration (in bundle sheath cells); 6. enzymes / PEP carboxylase, have high optimum temperature;	
		7. approx 45°C;	
		8. not denatured ;	[4 max]
			[Total: 10]

Q14.

(a)	1	oxygen availability low (when soil is flooded);	
	2	plants carry out an aerobic respiration;	
	3	ethanol produced;	
	4	roots can continue to respire;	[2 max]
(b)	(i)	(store of) nutrients; A named nutrient ignore food / water / fibre for, germination / growth of embryo;	[2]
	(ii)	protein in aleurone layer;	-
		which is removed in white rice; ora	[2]
	(iii)	endosperm makes up a greater proportion of the total mass in white rice; or	
		brown rice has more, lipid / fibre / protein, than white rice so less carbohydrates per gram;	[1 max]
	(iv)	1 cheap source of food;	
		2 high, energy value / fibre content;	
		3 high in carbohydrate;	
		4 contain wide range of nutrients or three named nutrients;	
		5 cereal grains store well;	
		6 because they contain very little water;	[2 max]
			[Total: 9]

Q15.

4	(a)	1	water lost by, evaporation / transpiration;	
		2	no water uptake (by roots);	[2]
	(b)	(i)	as water potential increases, oxygen uptake increases; must be stated	
			2 levels off (at 5 kPa / at 225 au);	
			3 figures; two water potential plus two oxygen uptake figures plus kPa	[2 max]
		(ii)	1 succinate converted to oxaloacetate;	
			2 dehydrogenation / oxidation;	
			3 NAD, is reduced / accepts hydrogen;	
			4 (hydrogens move to) ETC;	
			5 hydrogen splits into protons and electrons;	
			6 electrons pass along ETC;	
			7 ADP + Pi → ATP ;	
			8 oxygen, receives protons and electrons / is final electron acceptor, to form water;	[4 max]
(c)	(i)	1	water leaves mitochondrion; A other named organelle	
		2	by osmosis / down water potential gradient;	
		3	idea mechanical disruption to membranes;	
		4	membranes made of phospholipid (bilayer);	
		5	hydrophilic heads / glycoproteins / glycolipids, form fewer hydrogen bonds with water;	
		6	reduces, stability / fluidity (of membrane);	
		7	ref. (proteins with) hydrophilic channels;	[3 max]

- (ii) 1 inner membrane (of mitochondrion) / cristae, site of ETC;
 - 2 fewer carriers held in position;
 - 3 fewer electrons pass along ETC;
 - 4 less ATP produced / less energy released;
 - 5 less oxygen required to act as electron acceptor;
 - 6 protons can move freely through the damaged inner membrane;
 - 7 proton gradient not formed;

accept ora for less damaged membranes for marking points 2-7

[3 max]

- (d) 1 extensive / deep, roots;
 - 2 leaves have small surface area;
 - 3 leaves, are curled / are waxy / have bulliform cells / have hinged cells;
 - 4 reduced stomata numbers / stomata in pits;

[2 max]

[Total: 16]

Q16.

- 4 (a) 1. low oxygen (in water) results in anaerobic respiration;
 - (anaerobic respiration) produces alcohol;
 - 3. rice tolerant to alcohol;
 - (because rice has) high levels of, alcohol dehydrogenase / enzyme that breaks down alcohol;
 - 5. presence of, aerenchyma / described;
 - allows, oxygen / air, to reach roots (from aerial tissues);

[3 max]

- (b) (i) 1. (immersion in water) stimulates production of ethene;
 - 2. (concentration of) ethene produced increased with time (after submergence);
 - 3. very little difference in ethene production between T65 and C9285;
 - 4. use of figures; 2 values of ethene plus 2 values of time for either T65 or C9285

[2 max]

- in T65 ethene does not affect internode elongation but in C9285 ethene promotes internode elongation;
 - 2. in C9285, greater concentrations of ethene cause greater elongation;
 - use of comparative figures to support mark point 1 or mark point 2; both units at least once [2 max]
- (c) 1. SK genes present in C9285 / SK genes not present in T65;
 - increased production of GA in C9285 / little or no increased production of GA in T65;
 - 3. GA stimulates, stem elongation / AW;
 - 4. AVP; e.g. T65 has no receptors for ethene

[3 max]

[2]

- (d) (i) SK2 more important; ora
 - O. nivara has mutated SK2 and does not have deepwater response
 - O. glumaepatula has SK2 but not SK1 and does have deepwater response;
 - (ii) 1. (addition / insertion), of a, base / nucleotide, to DNA / to a gene;
 - changes a, sequence of three bases / triplet / codon; ignore ref. to frame shift
 - (triplet) no longer codes for an amino acid; [2 max]
 - (iii) 1. breed deepwater variety with (high-yielding) non-deepwater variety;
 - 2. identify / select, offspring with both deepwater response and high yield;
 - 3. breed selected offspring (with both deepwater response and high yield);
 - continue for many generations;

[Total: 17]

[3 max]

Q17.

- 4 (a) (i) 1. anthers, versatile / loosely attached /attached at one point (to filaments);
 - anthers / stamens / tassels / androecium, on long filaments / hang out (of, plant / flower);
 - anthers / stamens / tassels / androecium, above leaves / high up;
 - 4. stigmas / silks, hang out (of, plant / flower);
 - stigmas / silks, large surface area / hairy / feathery / long, (to catch pollen);
 - 6. no / small, petals allow access to wind / AW; ignore references to pollen [3 max]

(ii) 1. increased genetic variation / increased heterozygosity / more diverse gene pool / increased gene pool; 2. reduced inbreeding / prevents inbreeding depression; less likely that harmful recessive <u>alleles</u> will be expressed;
 hybrid vigour; 5. ability to respond to named change in conditions; e.g. climate / disease / pests [2 max] (b) (i) must be comparative statements maize has greater rate of photosynthesis (at all temperatures) / ora; optimum for maize is at 23°C while optimum for wheat is at 17.5°C; highest rate for maize is 39 units while highest rate for wheat is 26 units; after 17.5°C increase for maize while decrease for wheat; [2 max] (ii) 1. maize is C4; 2. PEP carboxylase more efficient at higher temperatures (than rubisco); 3. photorespiration occurring in wheat; ora
4. oxygen, instead of carbon dioxide, combines with RuBP;
5. less fixation of carbon dioxide;
6. Calvin cycle slows down; 7. AVP; e.g. detail of krantz anatomy R ref. denaturation [3 max] (c) (i) 1. protein in aleurone layer; 2. which is removed in white rice; A outer layer(s) removed 3. ref. different species; [2 max]

(ii) 1. wheat has more iron / comparative figs;
 2. ref. haemoglobin;
 3. low haemoglobin linked to anaemia;

[Total: 14]

[2 max]

Q18.

5 (a) transfer of pollen from anther to stigma; on the same, flower / plant ; [2] (b) 1. idea of genetic variation; increased heterozygosity; ora 3. hybrid vigour / decreased inbreeding depression; 4. able to adapt to changing conditions; 5. idea of some individuals surviving; 6. AVP; e.g. reduced risk of expression of harmful recessive alleles [3 max] (c) (i) 1. initially / first 24 mins, exposure time increases, number of seeds produced / (chance of) fertilisation; 2. then / after 24 or 44 mins, steep decrease in, number of seeds produced / (chance of) fertilisation : 3. from 120 mins, no seeds produced / no fertilisation; [2 max] (ii) 1. plant GM maize some distance away from places that teosinte grows; 2. estimate how far pollen can travel in 120 minutes; 3. need more results between 60-120 minutes; [2 max] [Total:9]

Q19.

4 (a)

[3]

- (b) 1 protein higher in whole grain flour because protein is in aleurone layer;
 - 2 parts containing protein / aleurone layer, not removed (as in white flour);
 - 3 dietary fibre higher in whole grain flour because (most) fibre is in, pericarp / testa;
 - 4 pericarp / testa, has not been removed (as in white flour);
 - 5 carbohydrate content <u>lower</u> in whole grain flour **because** outer parts not removed; accept **ora** throughout [3 max]
- (c) (i) starch must be digested (to glucose) before it is absorbed / digestion of starch takes time;
 - (ii) 1 amylose has 1-4 bonds / amylopectin has 1-4 bonds plus 1-6 bonds;
 - 2 amylose, digested / broken down to glucose / acted on by amylase, more slowly;
 - 3 because fewer sites for enzyme to work on / AW; accept ora for mp2 and mp3 [2 max]
- (d) (i) 1 increasing intake (of whole cereal grains) decreases risk (of developing type II diabetes);
 - 2 use of figures supporting this relationship;
 - 3 not all values fit the trend / reference to this not being a linear effect;
 - 4 reference to higher risk at 19.0 24.5 intake; [3 max]
 - (ii) 1 idea that the risk of 1.00 for each food group is not the same risk;
 - 2 no info on size of servings / no indications that same units used for each group;
 - 3 intervals of range of intake not consistent different intervals may give different results;
 [2 max]
 - (iii) 1 fruits contain, sugars / glucose / fructose;
 - 2 sugar has a high GI;

[2]

[Total: 16]

Q20.

- 7 (a) 1 idea of genetic variation;
 - 2 increased heterozygosity / decreased homozygosity;
 - 3 hybrid vigour / decreased in breeding depression;
 - 4 able to adapt to changing conditions;
 - 5 idea of some individuals surviving ;
 - 6 AVP; e.g. reduced risk of expression of harmful recessive alleles

[3 max]

(b) (i) most affected

almond, because, 100% / all / only, pollinated by honey bee;

least affected
orange, because only 25% pollinated by honey bee / 75% pollinated by other methods [2]

(ii) any three from

- 1 parasites / mites / viruses / bacteria ;
 - A disease
- 2 detail of climate change ; e.g. temperature change
- 3 pollution qualified; e.g. increased use of pesticides / increased sulfur dioxide concentration in air
- 4 inbreeding;
- 5 competition for food / food shortage;
- 6 increase in predator numbers;
- 7 AVP; e.g. ref. killer bees / plant monoculture provides limited nutrition [3 max]

[Total: 8]

Q21.

```
5 (a) 1. no change between 1860 and 1930;
        2. ref. to increases from 1930 to 2010;
        3. use of figures including units;
                                                                                                  [3]
    (b) 1. single-cross hybrids have homozygous parents;
        2. each has inherited the same alleles;
        3. (so) they are uniformly heterozygous;
        4. double-cross hybrids have heterozygous parents;
        5. each has inherited different combinations of alleles
           (mixture of) homozygous dominant, homozygous recessive and heterozygous hybrids;
                                                                                             [max 3]
    (c) (i) 1. the greater the inbreeding coefficient, the lower the yield;
             2. in each site in each year;
             3. use of figures;
                                                                                              [max 2]
        (ii) 1. the yield differs, at different sites / in different years;
             2. for the same inbreeding coefficient;
             3. use of figures;
            4. named environmental factor; e.g. rainfall / temperature / mineral content of soil
                                                                                              [max 2]
                                                                                          [Total: 10]
```

Q22.

```
5 (a) (i) 1. greater in teosinte (than in maize);
             2. greater at 9 loci / less at 1 locus / except at locus 7;
             3. greatest difference at locus 10;
             4. use of comparative figures;
                                                                                                 [max 2]
        (ii) 1. artificial selection / selective breeding;
             2. humans carry out selection;
             3. of plants with desirable traits;
             4. not all alleles selected (in cultivated varieties);
             increased homozygosity;
             6. idea that greater variety of alleles are needed to survive in the wild environment;
                                                                                                 [max 3]
        (iii) 1. wild plants have greater variety of, alleles / base sequences;
             2. could be useful for future breeding;
             3. example of use; e.g. to cope with climate change / drought
                                                                                                [max 2]
   (b) 1. to avoid inbreeding depression;
       2. hybrids have, higher yields / hybrid vigour;
       3. avoids expression of harmful recessive alleles;
       4. ref. to genetic uniformity;
       5. (which) results in easier, cultivation / harvest / etc;
                                                                                                [max 3]
                                                                                             [Total: 10]
```

023.

(a)	(i)	general description of the trend; steepest / fastest, increase between 1996 and 1999; comparative data quote either for Bt cotton or HT cotton; e.g. Bt cotton increased from 16% (in 1996) to 75% in 2013 or	
		HT cotton increased from 2% (in 1996) to 82% in 2013 ref. most cotton is modified to be both Bt and HT;	[max 3]
	(ii)	Agrobacterium tumefaciens / Ti plasmid / pGreen plasmid ;	[1]
(iii)	to check whether gene transfer was successful; to see which parts of plant expressed new genes; GUS marker easy to, use / track / see (compared to antibiotic resistance resistance)	markers) ; [max 2]
(b)	(i)	number (of glyphosate-resistant weed species) only increased after 1995 / 1995 this was when, GM crops resistant to herbicide / HT crops, were introduced;	96 ; [2]
	(ii)	no triazine-resistance genes existed in crops but weeds developed triazine residea that triazine resistance in weeds pre-dates, gene technology / genetic mo	
(iii)	spontaneous / random, mutation; weeds without, <u>allele / mutation</u> , die; ora when / so long as, (named) herbicide (still) applied; new allele / mutation, <u>select</u> ed for / gives <u>select</u> ive advantage; ora survivors, breed / reproduce / pass on, allele / mutation; ora frequency of, new allele / mutation, increases;	[max 4]
	any 1. 2. 3. 4. 5.	suitable suggestions, such as: the damage done by the insect pests surveyed; the number of reports of resistance for each species; the proportion of populations with the highest percentage of resistant individua the effect on the crops concerned of pest resistance at the levels given (<1%, e.g. the losses in yield the geographical spread of the insect pest species that show resistance; AVP;	
	7.	AVP;	[max 2]
			Hotal: 151

Q24.

```
(a) (i) AABBCC;
                                                                                          [1]
     (ii) meiosis unsuccessful (in, sterile hybrid/AB);
         gametes not formed;
         bivalents cannot form/chromosomes cannot pair up/chromosomes are not
         homologous;
         polyploidy occurs/chromosomes double; A tetraploid
         failure of cell division/all chromosomes in one daughter cell; A description
         chromosomes can now form pairs/gametes can be formed/
                                                                                      [max 4]
         meiosis can be completed;
 (b) (i) in presence of Eβf large number aphids, stop feeding/move;
         in absence of Eβf, few/no, aphids, stop feeding/move;
         air in Experiment 1, has other chemicals / not pure Eβf or air in Experiment 2
         has only Eβf;
         Eβf concentration in Experiment 2 may be unnaturally high or Eβf
         concentration unknown in Experiment 1;
         different volumes of air in Experiment 1 and Experiment 2;
         comparative data quote;
         e.g.
         55% versus 84%
                                   54 out of 99 versus 111 out of 132
                             or
         54.5% versus 0.9% or
                                   54 out of 99 versus 1 out of 113
         84% versus 0%
                             or 111 out of 132 versus 0 out of 106
                                                                                      [max 4]
(ii) Eβf stops aphids settling;
     Eβf attracts, predators of aphids/ladybirds;
     attacked aphids secrete more Eßf;
     aphids not, eating/taking nutrients from, wheat;
                                                                                    [max 3]
(iii) gene/Eβf, already in, peppermint/various plant species;
     Eβf not, toxic/harmful to human health;
     no new chemical added to human diet;
     does not kill insects (unlike Bt maize or cotton);
     aphids still available for, predators/food web;
                                                                                    [max 3]
                                                                                 [Total: 15]
```

Section_B

10 (a) ignore references to function accept from diagram

3 – 10 μm (diameter);

3. ground substance / stroma;

2. double membrane;

1.

	4.	contains enzymes / named enzyme, e.g. rubisco;	
	5.	also, sugars / lipids / starch;	
	6.	70S / AW, ribosomes;	
	7.	circular DNA;	
	8.	internal membrane system / fluid-filled sacs / thylakoids; A flattened sacs	
	9.	grana are stacks of thylakoids;	
	10	. (grana) membranes hold, photosynthetic pigments / ATP synthase / ETC;	[7 max]
(b)	11. 6	ethene (in plant);	
	12. 9	stimulates production of gibberellin;	
	13. (gibberellin stimulates, cell division / cell elongation / increase in stem length;	
	14. I	eaves / flowers, above water;	
	15. (so) photosynthesis can occur;	
	16. (so) sexual reproduction / pollination, can occur;	
	17. 8	erenchyma / description;	
	18. 8	assists gas diffusion (within plant);	
	19. 8	air can be trapped by specialised underwater leaves;	
	20. (submerged parts of plant) carry out anaerobic respiration;	
	21.	produce ethanol;	
	22. (can tolerate high concentrations of ethanol;	
	23.	produce a lot of ethanol dehydrogenase;	[8 max]
			[Total: 15]

2.

```
(a) 1 high, carbohydrate/starch, content; A 70-80%
       2 source of, energy/ATP;
       3 protein provides amino acids;
       4 for growth;
       5 low in fat; A 2-4%
       6 contains essential fatty acids;
       7 source of, vitamin B/vitamin E;
       8 deficient in, vitamin A/vitamin D/vitamin C;
        9 ref. to Golden Rice and vitamin A; A ref. to other valid examples
        10 wide range / AW, of minerals;
        11 named mineral plus use in human body; e.g. calcium for bone development
        12 high in fibre;
        13 for peristalsis/ prevents constipation;
        14 easily, dried/stored;
        15 AVP; e.g. staple diet for much of the world/named staple crop and location
        16 AVP; e.g. different parts of grain have different nutrients / ref. to processing
                                                                                        [max 8]
            grain
(b) 1
       seed is, dormant/metabolically inactive;
       water enters seed;
       embryo, produces/releases, gibberellin;
    3
       gibberellin stimulates aleurone layer;
    5
       (by) affecting, gene coding/transcription of mRNA, for amylase;
    6
        to produce amylase;
    7
       amylase hydrolyses starch;
       in endosperm;
       to, maltose/glucose;
    10 embryo uses sugars for respiration;
    11 energy/ATP, used for growth;
                                                                                      [max 7]
                                                                                   [Total: 15]
```

3.

9 (a) 1 vitamin A found in aleurone layer of rice (seeds); 2 white rice does not contain, aleurone layer/vitamin A/carotenoids/ β carotene; 3 genes coding for vitamin A production extracted; from, bacteria/Erwinia uredovora/Pantoea ananatis; 5 (and) daffodils/maize; 6 inserted into plasmids/plasmid used as a vector; 7 promoters added; plasmids put into Agrobacterium tumefaciens; 9 Agrobacterium tumefaciens mixed with rice embryos; 10 (some embryos) take up bacteria and vitamin A gene; A gene gun 11 grow into adult plants; 12 produce seeds with, vitamin A/carotene; 13 in endosperm; 14 AVP; e.g. ref. to Golden Rice™ [max 8] (b) 1 GM seed could be difficult for farmers in developing countries to obtain; 2 high cost of (buying) GM seed/cannot use own seed; 3 too expensive for, people to buy/farmers to sell; 4 might reduce efforts to relieve poverty; 5 may not grow well in all conditions (as other traits not selected for); 6 ref. to possible, allergic reactions in humans/toxicity of more herbicide left after use/adverse effects on the immune system; 7 under-developed countries becoming more dependent on other countries; 8 cross-pollination with, wild plants/organic crops; 9 new more resistant weeds/"superweeds"; 10 ref. to loss of traditional varieties; 11 loss of genetic diversity; 12 harm to other species; e.g. effect on rest of food chain [max 7] [Total: 15]